anndict.plot.plot_confusion_matrix#
- anndict.plot.plot_confusion_matrix(true_labels_encoded, predicted_labels_encoded, label_encoder, color_map, title='Confusion Matrix', row_color_keys=None, col_color_keys=None, true_label_color_dict=None, predicted_label_color_dict=None, figsize=None, diagonalize=False, true_ticklabels=None, predicted_ticklabels=None, annot=None)[source]#
Plot a confusion matrix using cluster mapping with optional color annotations.
This function computes a confusion matrix based on encoded true and predicted labels and optionally reorders the matrix to maximize diagonal alignment. It supports row and column coloring based on custom dictionaries and color maps.
- Parameters:
- true_labels_encoded
ndarray
Encoded true labels.
- predicted_labels_encoded
ndarray
Encoded predicted labels.
- label_encoder
LabelEncoder
A fitted
sklearn
LabelEncoder
that can decode the labels.- color_map
dict
[str
,dict
[str
,str
]] A nested dictionary specifying how labels should be colored. The first-level keys match possible color keys (e.g.,
'row'
,'col'
), and each maps to a dict from label attributes to color codes.- title
str
(default:'Confusion Matrix'
) The title of the plot.
- row_color_keys
list
[str
] |None
(default:None
) Keys to extract color information for the rows from
color_map
.- col_color_keys
list
[str
] |None
(default:None
) Keys to extract color information for the columns from
color_map
.- true_label_color_dict
dict
[str
,dict
[str
,str
]] |None
(default:None
) A nested
dict
specifying row-label-specific color mappings.- predicted_label_color_dict
dict
[str
,dict
[str
,str
]] |None
(default:None
) A nested
dict
specifying column-label-specific color mappings.- true_labels
Original (not encoded) true labels, if needed.
- predicted_labels
Original (not encoded) predicted labels, if needed.
- figsize
tuple
[float
,float
] |None
(default:None
) Figure size passed to seaborn’s
clustermap()
.- diagonalize
bool
(default:False
) If
True
, reorders the confusion matrix to maximize its diagonal alignment.- true_ticklabels
bool
|list
[str
] |None
(default:None
) Labels to display along the rows of the confusion matrix. If
True
, display all; ifFalse
, display none.- predicted_ticklabels
bool
|list
[str
] |None
(default:None
) Labels to display along the columns of the confusion matrix. If
True
, display all; ifFalse
, display none.- annot
bool
|None
(default:None
) Whether to annotate each cell with its numeric value.
- true_labels_encoded
- Return type:
ClusterGrid
- Returns:
A seaborn
ClusterGrid
object displaying the plotted confusion matrix.
Notes
- If the number of true or predicted labels exceeds 40,
tick labels and annotations are disabled by default for better visibility.
The matrix is normalized by the number of samples in each true class.
- If diagonalize is True, reorder the columns and
row to diagonalize the matrix to the extent possible.
Examples
# Assume true_encoded, pred_encoded, and le are given, along with a color_map dict g = plot_confusion_matrix( true_labels_encoded=true_encoded, predicted_labels_encoded=pred_encoded, label_encoder=le, color_map={'some_color_key': {'some_label_value': '#ff0000'}} )