anndict.utils.stable_label#
- anndict.utils.stable_label(x, y, classifier, *, max_iterations=100, stability_threshold=0.05, moving_average_length=3, random_state=None)[source]#
Trains a classifier using a semi-supervised approach where labels are probabilistically reassigned based on classifier predictions.
- Parameters:
- x
ndarray
feature matrix.
- y
ndarray
initial labels for all data.
- classifier
ClassifierMixin
a classifier instance that implements fit and predict_proba methods.
- max_iterations
int
(default:100
) maximum number of iterations for updating labels.
- stability_threshold
float
(default:0.05
) threshold for the fraction of labels changing to consider the labeling stable.
- moving_average_length
int
(default:3
) number of past iterations to consider for moving average.
- random_state
int
|None
(default:None
) seed for random number generator for reproducibility.
- x
- Return type:
tuple
[ClassifierMixin
,list
[float
],int
,ndarray
]- Returns:
- classifier
ClassifierMixin
trained classifier.
- history
list
[float
] percentage of labels that changed at each iteration.
- iterations
int
number of iterations run.
- final_labels
ndarray
the labels after the last iteration.
@todo - switch pca_density_subsets to use pca_density_filter_main or pca_density_filter_adata
- classifier